
Mendelian Genetics

The previous “Cell Division” unit described the general process of Meiosis. In this unit we will
examine how Meiosis influences trait inheritance. In other words, we will relate the principles
of Meiosis to the passing on of measurable characteristics from parent to offspring. We refer to
this as Mendelian genetics, because the principles discussed here were originally described by
the Czech monk Gregor Mendel.

1 Central Principle of Genetics

In a stable environment, trait variation is determined by genes. Remember that a
gene is a section of DNA that encodes a product. A gene is a discrete unit (individual entity
distinct from others). Based on this central principle, the variation we see in organisms is due to
variation in genes (in other words, trait variation comes from alleles- which are simply unique
versions of a gene). A trait is an observable characteristic, and a unique version of a trait is
called a phenotype. Based on this central principle, a phenotype is determined by the alleles
that an organism possesses, called a genotype. While the necessary criterion for this principle is
rarely met (because environments are largely variable), it is a foundational principle upon which
additional information can be established. The first person to recognize the discrete nature of
heredity was Gregor Mendel, the “Father of Genetics”.

2 Gregor Mendel’s Experimental System

In the middle of the 1800s, the monk Gregor Mendel was meticulously measuring traits of his
pea plants in the greenhouse of the St. Thomas monastery (in Brno, present-day Czechia). He
was particularly interested in seven traits that each showed two distinct phenotypes:

Trait Phenotypes
1 Seed (pea) shape round or wrinkled (angular)
2 Seed (pea) color yellow or green
3 Flower color violet or white
4 Pod texture inflated or constricted
5 Pod color green or yellow
6 Flower location axial or terminal
7 Plant height tall or short

Bold phenotypes represent the dominant form

While breeding plants, Mendel noticed interesting patterns in the inheritance of these traits
between generations. To describe one of his experiments, we will consider a single trait: flower
color. Mendel bred plants until he obtained plants that would only produce the white flower
phenotype when crossed with each other and plants that would only produce the violet flower
phenotype when crossed with each other. An organism that consistently produces the same
phenotype is called true-breeding. Importantly, you can’t know if an organism in the parent
(P) generation is true-breeding after a single generation (called the F1 generation); you must
cross the resultant organisms with each other to reach the second generation (called the F2

generation). If the phenotypes of the organisms in the F2 are the same as P, then the strain
(genetically distinct group of organisms, usually created in a lab) is true-breeding (Figure 1).
Mendel then performed two experiments using the traits described in the table above (while he
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examined all of the traits, we will just focus on a couple of traits for simplicity).

Figure 1: Individuals of a true-breeding strain always produces the same phenotype when crossed
with each other.

NOTE: Mendel’s work was all done using the species Pisum sativum (garden pea).
This is a diploid organism, therefore the principles of this entire unit are discussed in a

diploid context. These principles can be expanded to other ploidy scenarios, but
starting with a diploid makes things simple.

2.1 1st Experiment: Monohybrid Cross and Segregation of Alleles

Mendel took true-breeding white flower plants and crossed them with true-breeding violet flower
plants. The result was an F1 generation with all violet flower plants. He then took these F1

plants and crossed them with each other, and ended up with 705 violet flower plants and 224
white flower plants (for a total of 929 F2 plants). By examining the phenotypic proportions
(705/929 = 0.76 for violet flowers, 224/929 = 0.24 for white flowers), Mendel calculated a ratio
of 3.15 : 1 (violet flower plants : white flower plants) (Figure 2) and noticed an approximate 3 :
1 ratio. From this information, Mendel hypothesized that the flower color trait was determined
by discrete, non-blending structures he called “elemente” (which today we know as genes), and
that two unique versions of the “elemente” determined flower color: a dominant form and a
recessive form. Today refer to “unique versions” of a gene as alleles.
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Figure 2: Outline of Mendel’s experimental design and results from his first experiment.

Mendel hypothesized that for a trait, each individual possesses two copies of a gene (e.g., each
plant had two copies of the ‘Flower Color’ gene). He thought that one allele (‘F’) created the
violet coloration, and that the other allele (‘f’) created the white coloration. He also suggested
that one allele was dominant over the other allele (called the recessive allele); the dominant
is represented with an uppercase letter (e.g., ‘F’) and the recessive allele is represented with
a lowercase letter (e.g., ‘f’). Under this hypothesis, individuals with two recessive alleles (‘ff’)
had white flowers, whereas individuals with just one dominant allele (i.e., individuals with ‘FF’
or ‘Ff) had violet flowers (Figure ??). The combination of alleles in an individual is known as
its genotype (e.g., ‘FF’, ‘Ff’, and ‘ff’ are all different genotypes), and each genotype encodes
a phenotype (e.g., ‘FF’ and ‘Ff’ are the genotypes that encode violet flowers, and ‘ff’ is the
genotype that encodes white flowers). A genotype with two of the same alleles (e.g., ‘FF’ or ‘ff’)
is called homozygous. Homozygous genotypes can either be homozygous dominant (having
both of the dominant alleles; e.g., ‘FF’) or homozygous recessive (having both of the recessive
alleles; e.g., ‘ff’). A genotype with two different genotypes (e.g., ‘Ff’) is called heterozygous.

Figure 3: Phenotypes and genotypes of individuals for a trait that exhibits complete dominance.
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While each parent can potentially pass on either of its alleles to offspring, only one allele at
random is passed on to an individual offspring. For example, a parent plant with genotype ‘Ff’
can pass on either the ‘F’ allele or the ‘f’ allele to an offspring, and the probability of either is
50% (just like a coin flip). This ground-breaking idea suggested by Mendel, that the alleles for a
gene randomly segregated into their own gamete, is called the Law of Segregation of Alleles.
Not only did Mendel suggest this as the mechanism of inheritance for a trait, he proved it with
his experiment.

2.1.1 The Monohybrid Cross

Remember above, when Mendel crossed the violet F1 plants and obtained the ratio of 3 : 1
(violet : white)? This is called a monohybrid cross, because it is a cross focused on one gene
between heterozygous individuals. ‘Mono’ is Greek for ‘one’, and in this example Mendel was
only focused on the gene controlling flower color. ‘Hybrid’ is Latin for ‘mixed’, and the two
individuals being crossed have mixed alleles from their true-breeding parents (‘F’ and ‘f’). If the
Law of Segregation of Alleles is true, you would expect that each individual in a monohybrid
cross (remember, each individual is ‘Ff’) has 50% probability of passing on the ‘F’ allele and 50%
probability of passing on the ‘f’ allele. This means that the offspring of the F2 generation can
have the genotypes ‘FF’, ‘Ff’, or ‘ff’. To understand the predicted frequency for each of these
genotypes in the F2 generation, it is important to understand two important rules of probability:
The ‘AND’ Rule and The ‘OR’ Rule. Read these rules below and do the practice problem
before checking if Mendel’s results fit with the Law of Segregation of Alleles.

Figure 4: Three ways of depicting the outcomes of the monohybrid cross: schematic of how F1

alleles contribute to the F2 genotypes where each arrow represents a gamete (left), using the
probability rules to calculate the frequency (a.k.a., probability) of phenotypes in the F2 (middle),
and using a Punnet square to calculate the frequency (a.k.a., probability) of phenotypes in the
F2 (right).

2.1.2 Probability

Probability is the frequency at which something occurs, and it can be used to understand how
likely it is that something will occur. This frequency can be expressed as a value between 0-1 (0
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= never happens, 1 = always happens) or a percentage (which is simply the decimal value x 100).
To calculate the frequency you take the number of times an event happened and divide it by
the total number of times it could have happened. For example, if you flip a coin 1,000,000,000
times and got ‘heads’ 499,972,631 times, you would calculate the probability of getting heads by
dividing 499,972,631 by 1,000,000,000 and get 0.499972631 (you could round this up to 0.5).

2.1.3 The ‘AND’ Rule: Multiplication

This is the rule to follow if you are trying to calculate probability of an event and you hear
yourself say ’and’. This rule is used when you want to know the probability of multiple events
happening together or subsequently. For example, let’s say you plan to flip a coin two times,
and you want to know the probability of getting ‘heads’ the first time AND the probability of
getting ‘heads’ the second time. To do this, you multiply the probability of the events together
(0.5 x 0.5). Therefore, the probability of getting ’heads’ on the first flip and the second flip is
0.5 x 0.5 = 0.25. This rule is also known as the ‘product’ rule.

2.1.4 The ‘OR’ Rule: Addition

This is the rule to follow if you are trying to calculate probability of an event and you hear
yourself say ’or’. This rule is used when you want to know the probability of an event happening
from several options. For example, let’s say you plan to flip a coin one time, and you want to
know the probability of getting ‘heads’ OR ’tails’. To do this, you add the probability of the
events together (0.5 + 0.5). Therefore, the probability of getting ’heads’ or ’tails’ when you flip
a coin is 0.5 + 0.5 = 1 (it would be impossible to get something else!). This rule is also known
as the ‘sum’ rule.

Practice Question: For a monohybrid cross between flowers heterozygous for
flower color (genotype ‘Ff’) that resulted in 929 offspring, how many of those would
you expect to be of genotype ‘FF’? How many would you expect to be of genotype
‘Ff’? How many would you expect to be of genotype ‘ff’? What is the expected

genotypic ratio?

Solution: There are two parents: P1 (gentoype ‘Ff’) and P2 (genotype ‘Ff’). An
offspring of genotype ‘FF’ would require that P1 gives an ‘F’ allele (probability =
0.5) AND P2 also gives an ‘F’ allele (probability = 0.5). Therefore, the probability
of having an ‘FF’ offspring is 0.5 x 0.5 = 0.25. This means you would expect that

929 x 0.25 = 232.25 offspring have the ’FF’ genotype.

An offspring of genotype ‘ff’ would require that P1 gives an ‘f’ allele (probability =
0.5) AND P2 also gives an ‘f’ allele (probability = 0.5). Therefore, the probability
of having an ‘ff’ offspring is 0.5 x 0.5 = 0.25. This means you would expect that 929

x 0.25 = 232.25 offspring have the ’FF’ genotype.

This is where it gets tricky. An offspring of genotype ‘Ff’ would require that P1
gives an ‘F’ allele (probability = 0.5) AND P2 also gives an ‘f’ allele (probability =
0.5). OR P1 gives an ‘F’ allele (probability = 0.5) AND P2 also gives an ‘f’ allele
(probability = 0.5). Therefore, the probability of having an ‘Ff’ offspring is (0.5 x
0.5) + (0.5 x 0.5) = 0.5. This means you would expect that 929 x 0.5 = 464.5

offspring have the ’FF’ genotype.

You can verify that these are all of the possibilities (and check your work) by adding together the probabilities: 0.25 + 0.5 + 0.25 = 1
(‘FF’ + ‘Ff’ + ‘ff’). To get the genotypic ratio, simply take the smallest probability (0.25 in this case) and multiply it by a number so
that it equals 1 (0.25 x 4 = 1). Then multiply all of the probabilities by that number (0.25 x 4 = 1, 0.5 x 4 = 2). Your ratio is 1 : 2 :

1 (‘FF’ : ‘Ff’ : ‘ff’)
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Practice Question: For a monohybrid cross between flowers heterozygous for
flower color (genotype ‘Ff’) that resulted in 929 offspring, how many would you

expect to have violet flowers? How many would you expect to have white flowers?
What is the expected phenotypic ratio? (Before solving this problem, you need to

first complete the previous practice problem)

Solution: Now you need to think about the phenotypes of these genotypes. Violet
flowers can have genotype ‘FF’ or ‘Ff’, so you can simply add up the expected
number of of these genotypes: 232.25 + 464.5 = 696.75 expected violet flowers.
White flowers can only have genotype ‘ff’, so we just use the genotype number:

232.25 expected white flowers.

You get the ratios the same way as described above. Because the probability of
violet is 0.75 (0.25 + 0.5 [‘FF’ + ‘Ff’]) and the probability of white is 0.25 [‘ff’], we

have a ratio of 3 : 1.

Mendel’s results from his experiment (which we referenced above) were 705 violet flowers and
224 white flowers. Based on our estimations from the practice problems above (696.75 violet
and 232.25 white), do his results fit the Law of Segregation of Alleles? They are pretty close!
Why do you think they aren’t exactly what we predicted? If you flip a coin 1,000 times, do you
think you would get exactly 500 ‘heads’? Because of sampling, you probably won’t. In later
sections of this book we will introduce statistical tests you can use to see if your data match
expectations under a given hypothesis.

2.1.5 Meiotic Context for the Segregation of Alleles

While Mendel had no understanding of chromosomes or Meiosis, his Law of Segregation of Alle-
les makes perfect sense in the context of Meiosis. Let’s think about how this would look for the
gametes produced by the F1 plants. An individual F1 plant inherited a genome from P1 and a
genome from P2. Because we are focused on one genes in Mendel’s monohybrid cross experiment,
we will just imagine this using a pair of homologous chromosomes. When the homologous pairs
separate from each other in Anaphase I, each daughter cell ends up with just one chromosome.
When the sister chromatids separate from each other in Anaphase II, the resulting gametes each
contain only one allele. The Law of Segregation of Alleles is a result of chromosomal
separation in Anaphase I and Anaphase II (Figure 5).

2.1.6 The Punnet Square

A more visual approach to understanding probability with genetic crosses is using a Punnet
square, which is simply a matrix (or grid) that depicts cross outcomes. In a Punnett square, the
side and top show the possible gametes for parents. Figure 4 (right panel) depicts a monohybrid
cross. The top of the matrix has the possible gametes from P1 (which is male in this case),
and the side of the matrix shows the possible gametes from P2 (female). Because the Law
of Independent Assortment states that each gamete can only have one allele for a gene, you’ll
notice that the gametes only contain one allele. A Punnet square also accounts for the random
nature of allele segregation- the top only has two options (columns), so each allele has a 1/2
(0.5) probability. This is the same for the side, there are only two optioins (rows), so each allele
has a 1/2 (0.5) probability. Each cell within the matrix represents a fertilization event between
the gametes of the parents. It easy to see the 1 : 2 : 1 genotypic ratio and 3 : 1 phenotypic
ratio with a Punnet square.
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Figure 5: Depiction of how Meiosis results in the Law of Segregation of Alleles.

2.2 2nd Experiment: Dihybrid Cross and Independent Assortment

Mendel was also interested in the inheritance patterns of two traits (seed [pea] shape and seed
[pea] color) together, under the assumption that these two traits were controlled by two differ-
ent genes. In his second experiment, he crossed plants that were true breeding for round/yellow
seeds (parent P1) with plants that were true breeding for wrinkled/yellow seeds (parent P2)
and ended up with F1 plants that were all round/yellow. Just as he did in his first experiment
(the monohybrid cross), Mendel then took the F1 plants and crossed them with each other. Of
the 556 total seeds in the F2 generation, 315 (or 57%) were round/yellow seeds, 101 (or 18%)
were wrinkled/yellow seeds, 108 (or 19%) were round/green seeds, and were 32 (6%) or wrin-
kled/green seeds. Mendel noticed an approximate phenotypic ratio of 9 : 3 : 3 : 1 for these
phenotypes (round/yellow : wrinkled/yellow : round/green : wrinkled green) (Figure 6).

NOTE: The seed phenotype belongs to the plant it will become, not the plant
who’s pod the seed is in. It is a common pitfall to attribute seed shape / color to
the parent plant. For example, a round seed of genotype ’Rr’ might be within the

pod of a plant with the ’rr’ genotype (which originally came from an wrinkled seed).
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Figure 6: Outline of Mendel’s experimental design and results from his second experiment.

Practice problem: What were the genotypes for the parent plants (P1 and P2)
from Mendel’s second experiment?

Solution: Because there are two traits here (one gene for seed shape, another gene
for seed color), each plant genotype should include four alleles (two alleles for the
seed shape gene, and two alleles for the seed color gene). By looking at the F1, we
know which traits are dominant: round is dominant over wrinkled, and yellow is
dominant over green. So we can use this information to give upper- or lower-case

letters to each allele: ‘R’ for round, ‘r’ for wrinkled; ‘Y’ for yellow, ‘y’ for green (you
could have used any letters, these are just the commonly used letters for these
traits). Since P1 (round/yellow) and P2 (wrinkled/green) were true-breeding for
their traits, we know that there genotypes must be ‘RRYY’ for P1 and ‘rryy’ for 2

Practice problem: What were the genotypes for the F1 plants from Mendel’s
second experiment?

Solution: Think about the alleles that each parent can give. The round/yellow
parent can only give an ’R’ and a ’Y’ allele. The wrinkled/green parent can only

give an ’r’ and a ’y’ allele. While the Law of Segregation states that only one allele
per gene can be given to offspring, keep in mind that we are now looking at two
separate genes. Therefore, one allele for each gene is given to offspring, and the

genotype for all of the F1 individuals is ‘RrYy’.

Mendel hypothesized that alleles of different traits were inherited independent of each other.
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For example, even though the ‘R’ allele and the ‘Y’ allele present in an F1 plant were inherited
from the same parent (P1), they did not both have to be passed on in the same gamete by that
F1 plant. In other words, the gamete genotypes of the F1 plants don’t have to be either ‘RY’
or ‘ry’– they could be ‘RY’, ‘Ry’, ‘rY’, or ‘ry’. The Law of Segregation of Alleles still applies
here- so only one allele of each gene is present in a gamete (e.g., you can’t have a gamete with
genotype ‘RR’, ‘rr’, or ‘Rr’, because each gamete contains only one allele for each gene- the ‘R’
and ‘r’ alleles are both alleles for the seed shape gene).

In this hypothesis for Mendel’s second experiment, he suggested that the alleles of different
genes are unlinked to each other. In other words, the gene for seed shape and the gene for seed
color are inherited independent of each other. This ground-breaking idea suggested by Mendel
is called the Law of Independent Assortment. Not only did Mendel suggest this as the
mechanism of inheritance for multiple traits, he proved it with his experiment.

2.2.1 The Dihybrid Cross

This second experiment is similar to the first (starting by crossing two true-breeding individuals
and then crossing their offspring with each other), but this time he was examining two genes to-
gether (the gene controlling seed shape and the gene controlling seed color). For this reason, this
is called a dihybrid cross (two genes, both heterozygous). The explanation for the outcome
of this cross is more complex than that of the monohybrid cross, and it is easiest to understand
when visualized in a Punnet square (Figure ??). In this figure, you can see the possible gamete
genotypes with their respective proportions (shown in the row/column headers: each has a 1/4
probability) and the genotypes of the fertilized offspring (shown in the cells of the matrix). To
obtain the phenotypic ratio, simply categorize the phenotype for each genotype and then count
them up (9 round/yellow, 3 round/green, 3 wrinkled/yellow, 1 wrinkled/green).

2.2.2 Probability Rules and the Dihybrid Cross

It is also useful to consider how the probability rules contribute to the observed ratios in Mendel’s
dihybrid cross. Because we are crossing individuals from the F1 generation, let’s call the parents
of this cross F1A and F1B. Keep in mind that the genotype of both F1A and F1B is ‘RrYy’.
Each parent can create four possible gametes (‘RY’, ‘Ry’, ‘rY’, or ‘ry’), all of which have the
same probability (since there are four possibilities, each gamete has 1/4 [or 0.25] probability).
Therefore, the possible genotypes in the F2 generation are ‘RRYY’, ‘RrYY’, ‘RRYy’, ‘RrYy’,
‘RRyy’, ‘Rryy’, ‘rrYY’, ‘rrYy’, and ‘rryy’. You can use the rules of probability to calculate the
frequency (i.e., probability) of these genotypes in the F2 generation.
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Figure 7: Punnet square showing the results of Mendel’s dihybrid cross.

Practice Question: What is the expected frequency of ‘RRYY’ in the F2

assuming the Law of Independent Assortment?

There are a couple of ways you could solve this problem:

Solution A: This would require the F1A AND F1B gametes to both be ‘RY’. We
can use the AND rule with these probabilities. Since the ‘RY’ gamete has

probability 0.25 for both F1A and F1B, the expected frequency [i.e., probability] of
‘RRYY’ in the F2 is 0.25 x 0.25 = 0.0625.

Solution B: This would require F1A AND F1B to both give an ‘R’ allele. The
probability of F1A giving an ‘R’ allele is 0.5 (since F1A has a ‘R’ allele and a ‘r’
allele, and the Law of Segregation means that either can be passed on with equal

probability). The probability of F1B giving an ‘R’ allele is also 0.5 (since F1B has an
‘R’ allele and an ‘r’ allele, and the Law of Segregation means that either can be

passed on with equal probability).

AND this would require F1A AND F1B to both give a ‘Y’ allele. The probability of
F1A giving a ‘Y’ allele is 0.5 (since F1A has a ‘Y’ allele and a ‘y’ allele, and the Law
of Segregation means that either can be passed on with equal probability). The

probability of F1B giving a ‘Y’ allele is also 0.5 (since F1B has a ‘Y’ allele and a ‘y’
allele, and the Law of Segregation means that either can be passed on with equal

probability). We can use the AND rule to calculate the probability as 0.5 x 0.5 x 0.5
x 0.5 = 0.0625.
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Practice Question: What is the expected frequency of ‘rrYy’ in the F2 assuming
the Law of Independent Assortment?

There are a couple of ways you could solve this problem:

Solution A: There are a two gametic genotype combinations that could combine
for this F2 genotype: (F1A ‘rY’ AND F1B ‘ry’) OR (F1A ‘ry’ AND F1B ‘rY’). We can
simply plug in the probability for each of these gametic genotypes: (0.25 AND 0.25)

OR (0.25 AND 0.25). Using the ‘AND’ and the ‘OR’ rules of probability, this
becomes: (0.25 x 0.25) + (0.25 x 0.25) = 0.125.

Solution B: This would require F1A AND F1B to both give an ‘r’ allele. AND this
would require either of the following: (F1A gives a ‘Y’ allele AND F1B gives a ‘y’
allele) OR (F1A gives a ‘y’ allele AND F1B gives a ‘Y’ allele). So we have F1A ‘r’
AND F1B ‘r’ AND ( (F1A ‘Y’ AND F1A ‘y’) OR (F1A ‘y’ AND F1A ‘Y’) ). We can

simply plug in the probability of each parent giving these alleles: 0.5 AND 0.5 AND
( (0.5 AND 0.5) OR (0.5 AND 0.5) ). Using the ‘AND’ and the ‘OR’ rules of
probability, this becomes: 0.5 x 0.5 x ( (0.5 x 0.5) + (0.5 x 0.5) ) = 0.125.

2.2.3 Meiotic Context for Independent Assortment

While Mendel had no understanding of chromosomes or Meiosis, his Law of Independent Assort-
ment makes perfect sense in the context of Meiosis if we assume that the genes he examined were
on different chromosomes (which, luckily, they were!). Let’s think about how this would look for
the gametes produced by the F1 plants. An individual F1 plant inherited a genome from P1 and
a genome from P2. Because we are focused on two genes in Mendel’s dihybrid cross experiment,
we will just visualize this using two pairs of homologous chromosomes: A pair for chromosome
1 and a pair for chromosome 2 (Figure 8). When the homologous pair for chromosome 1 aligns
on the metaphase plate during Metaphase I, the arrangement (i.e., whether the chromosome
from P1 or 2 is on the left side) is random. This is the same case for the homologous pair
for chromosome 2, and the arrangement for chromosome 2 is independent of the arrangement
for chromosome 1. Because chromosome 1 “assorts” independently of chromosome 2, you can
mix-and-match the alleles from the parents for the gametes that will be created. The Law of
Independent Assortment is a result of chromosomes arranging independent of one
another during Metaphase I.

When just looking at two homologous pairs, the number of possible gametes is simply 4 (while
there are 8 gametes resulting from Meiosis, you’ll notice that there are only 4 unique gametes).
However, this number increases exponentially as you include other chromosomes. For example,
if we considered 3 homologous pairs, the number of possible gametes from independent assort-
ment is 8. For 4 homologous pairs, the number of possible gametes is 16. For 23 homologous
pairs (which is the case in humans), the number of possible gametes is 8,388,608. It is unfeasible
to calculate the number of possible gametes by drawing out Meiosis! Luckily there is a simple
math trick: the number of possible gametes = pn, where p = ploidy and n = the number of
chromosomes in a single set. For instance, in humans p = 2 (diploid) and n = 23. 223 = 8,388,608.

11



Figure 8: Depiction of how Meiosis results in the Law of Independent Assortment.

Uniquely You: Based on the math shown in the above paragraph, there was a
1/8,388,608 probability for the genetics of the sperm cell that created you, AND a
1/8,388,608 probability for the genetics of the egg cell that created you. Because
both of these made you, we can use the ‘AND’ rule to figure out their probability

together! The probability of getting ‘you’ from your parents is 1/8,388,608 x
1/8,388,608 = 1/70,368,744,177,664 (0.0000000000014%). And this is without
accounting for recombination in chromosomes! If we include recombination and

epigenetics (which we’ll discuss later in this semester) this probability becomes very
close to zero. Dr. Seuss was right when he said “There is no one alive who is Youer

than You”!

Exercises

1. If you cross a garden pea true-breeding for green seeds with one true-breeding for yellow
seeds, what proportion of the offspring do you expect to have green seeds?

(a) 0

(b) 1/2

(c) 1/4

(d) 3/4

(e) all of them

2. You perform a monohybrid cross to examine garden pea plant height. If you performed
this cross and obtained 900 tall plants in the F2 generation, approximately how many short
plants would you expect to have in the F2 generation?

(a) 100

(b) 200

(c) 300

(d) Not enough information to know
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3. Tay-Sachs is a recessive disease. What is the probability that two parents who are het-
erozygous have a child with Tay-Sachs disease?

(a) 1/4

(b) 2/4

(c) 3/4

(d) 0/4

4. Tay-Sachs is a recessive disease. What is the probability that the first two children of a
heterozygous couple both have Tay-Sachs disease?

(a) 1/4

(b) 1/2

(c) 1/16

(d) 1/8

5. Tay-Sachs is a recessive disease. What is the probability that one of the first two children
of a heterozygous couple has Tay-Sachs disease?

(a) 1/4

(b) 1/2

(c) 1/16

(d) 1/8

Answers

1. A

2. C

3. A

4. C

5. B
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